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Abstract. By an application to small silicon clusters Siy
(with N = 4,5,7,10) it is shown that truly global
geometry optimization on an ab initio or density
functional theory level can be achieved, at a computa-
tional cost of approximately 1-5 traditional local opti-
mization runs (depending on cluster size). This extends
global optimization from the limited area of empirical
potentials into the realm of ab initio quantum chemistry.
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1 Introduction

There are two central problems in global cluster
geometry optimization. One of these problems is the
approximately exponential growth of the number of
local minima with cluster size; this has been found
empirically for small Lennard-Jones clusters [1, 2]. It has
been argued that this might be an artifact of the
Lennard-Jones potential. It is, however, likely that a
scaling of a similar nature will prevail independent of the
potential, since even simpler subproblems turn out to be
of similar complexity. For example, the task of finding
the three-dimensional arrangement of points given their
pairwise distances has been shown to belong to the class
of non-polynomial (NP) complete problems [3]. This
strong scaling cannot be avoided even with modern
global optimization techniques, e.g. refined genetic
algorithm (GA) methods [4]. This problem of an
explosive search space growth can only be overcome
by an equally massive restriction of search space, using a
suitable mixture of external information, higher level
descriptions [5] and intelligent, adaptive growth strate-
gies [6]. This is not the aim of this article.

The second problem is the strong dependence of the
number of local minima and the geometries of the
minimum cluster structures on details of the potential.
This problem has been well known since the famous
comparison of Lennard-Jones clusters with Morse clus-

ters [7]. Even very elaborate empirical potentials [8] turn
out to contain obviously wrong global minima [9].
Therefore, ab initio treatments are ultimately inevitable,
but they are orders of magnitude more expensive than
empirical potentials. Since every global optimization
method requires very many evaluations of the potential,
it seems completely illusionary to attempt global geom-
etry optimizations on an ab initio level. Nevertheless,
exactly this can be done, and it is the aim of this article
to prove this via an actual application to a realistic
problem.

In a previous publication [9], a strategy was presented
that was designed to circumvent the second problem.
Global geometry optimization on a model potential is
done in parallel with (global) optimization of the pa-
rameters of this model potential. This is done by mini-
mization of the differences between model and ab initio
energies at the minimum structures found during the
global geometry optimization. In this way, the expensive
global optimization work is relegated to the cheap model
potential domain, leaving only a few local optimizations
in the ab initio domain. At the same time, the model
potential is fit progressively better to ab initio data, as
the algorithm proceeds. This method actually worked as
expected for small silicon clusters. However, in order to
save computational time, the ab initio potential was re-
placed by the complicated Bolding-Andersen empirical
potential [8], while the much simpler Stillinger-Weber
potential [10] in the modification of Gong [11] was used
as the model potential. In fact, this strategy turned out
to be even more powerful than expected. It found several
“new’” global minima on the Bolding-Andersen surface
that had escaped the attention of its original authors;
these minima were confirmed later in an independent
study [12].

In this article, it is demonstrated that this strategy
also works for an actual ab initio or, in this case, density
functional theory (DFT) potential, again for the exam-
ple of small silicon clusters. It is also demonstrated that
the expense for this type of global optimization typically
is in the order of a few local optimizations. Hence, global
geometry optimization at the ab initio level becomes
feasible even for systems of non-trivial size.
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Obviously, this strategy depends on how well the
model potential approaches the ab initio potential. As
demonstrated previously [9], a perfect fit is not neces-
sary; in fact, it is not even necessary that there is a one-
to-one relation between minima on the model potential
and minima on the ab initio potential, nor is a correct
energy ordering of the minima on the model potential
required. It is sufficient that within the basin of attrac-
tion of the global minimum on the ab initio potential
there is also an important minimum on the model po-
tential (i.e. 2 minimum that has some reasonable chance
of being found in a global minimization — this is not
necessarily the global minimum itself, since practical
global minimizations are not perfect, but typically a low-
lying local minimum). This places a lower limit on the
appropriateness of the model potential function. But
there are also upper limits on the goodness-of-fit and the
complexity of the model potential. If the model potential
matches the ab initio potential perfectly, no parameter
optimization of the model potential is needed, and the
task of global optimization on the ab initio potential
reduces to a global optimization exclusively on the
model potential. In this case, however, the computa-
tional expense of verifying such a perfect fit will be about
as large as conducting a global optimization on the ab
initio potential. Also, in practical applications of com-
plex model potentials with very many parameters, it may
become difficult to find reasonable intervals within
which the parameters can be varied without destroying
the suitability of the model potential. In spite of its im-
portance, this topic of determining appropriate model
potentials is beyond the scope of the present article; it
will be dealt with in future investigations.

It should be emphasized that this paper is meant as a
demonstration of the feasibility of the proposed method.
In particular, it is shown that the method leads to a low,
controlled computational expense while retaining a de-
gree of global convergence sufficient for normal practical
purposes. This paper is definitely not intended as a
global survey of the potential energy surface of small
silicon clusters, at whatever level of theory. Instead, it is
deemed sufficient to show that the method yields most of
the minima found in other, larger DFT or ab initio
studies, albeit at a smaller computational expense and
with greater confidence in global convergence. Also, the
results presented are definitely not the ultimate ab initio
answer to the silicon cluster structure question. Prelim-
inary state-averaged complete active space self-consis-
tent field (CASSCF) and multi-reference configuration
interaction (MRCI) calculations in our group [13] have
shown that, at least in the smallest clusters, several
electronic configurations significantly contribute to the
wavefunction in large regions of the cluster configura-
tion space. Hence, single-reference treatments as they are
done here and throughout most of the existing literature
on this topic may not be very realistic.

2 Method

For a better understanding of the results shown later, here is a short
description of the algorithm, as presented in Ref. [9]. The algorithm

consists of two main stages or phases. In phase I, cluster geometries
are globally optimized on the model potential, and at the same
time, the model potential parameters are optimized globally with
respect to ab initio (or DFT) single-point calculations, by iterating
the following steps:

1. Initialization: calculate model energy FEnoq; and ab initio
energies Eyye; for n random geometries.

2. Use a GA [6, 14-16] to optimize the model potential parameters
globally, by minimizing > | (Emod, —Emw-)2 for all n geom-
etries.

3. Choose a new random geometry.

4. Optimize this geometry globally on the model potential (with

the parameters found in step 2) using molecular dynamics

simulated annealing (MD-SA) [17-21] with incomplete cooling,
followed by local refinement. This leads to a new geometry:

n«—n+ 1.

Calculate Enod, and Eyye, for the resulting geometry.

6. Go to step 2, until the model potential parameters are
converged and until 7 is large enough.

i

In the applications below, we use a fixed value of nyax = 100;
the results shown give an impression of which values of ny,,x would
have been sufficient in each case. There is no need to have a GA [6,
14-16] and SA [17-21] in steps 2 and 4, respectively. They were used
here only because subroutines of this type were available that had
been applied previously in similar cases with success. In principle,
they can be replaced by any other global optimization method that
works comparably well. The MD-SA in step 4 is incomplete on
purpose; on the one hand, this avoids the slow, inefficient final
optimization phase that is more efficiently done by a local opti-
mization routine. On the other hand, it avoids repetitious re-dis-
coveries of the same minimum and allows for exploration of other
low-lying local minima of the model potential.

Phase II of the algorithm proceeds as follows:

Order the n resulting geometries of phase I by ab initio energy.
. Perform local ab initio (or DFT) optimizations of those
structures with the lowest energies that appear likely to lead
to different final structures.

b —

The resulting final structures will correspond to energetically
low-lying local minima on the ab initio (or DFT) surface and will
also include the global minimum with high probability.

Typically, global convergence of global optimization algorithms
can be proven only for an infinite effort (e.g. for infinitely long
trajectories with an exponential cooling schedule in SA [18]).
Therefore, in all practical global optimizations, there is never a
guarantee of finding the true global optimum (except in problems
of trivial size where it is possible to enumerate all minima). Hence,
the fact that this algorithm can locate the global minimum “only”
with some probability is not a disadvantage but a typical feature
that is to be expected. As shown in this article and in the previous
test application [9], the probability of locating the global minimum
is high for the examples given.

The presented algorithm is admittedly of a simple nature. Also,
a non-iterated version of it may be similar to what many researches
typically do to locate global or low-lying local minima: (local or
global) pre-optimization on an empirical potential or with semi-
empirical methods, followed by a series of local ab initio optimi-
zations. One novelty of the present approach lies in the adaption of
the model potential to the ab initio data (in this respect the method
resembles recent attempts to re-parametrize semiempirical methods
in order to achieve improved performance of these methods for a
specific, given system [22, 23]) and in the SCF-like iteration, al-
ternating between re-parametrization and geometry optimization,
ensuring that the fit of the model potential to the ab initio data is
done not at arbitrary points but in the interesting regions close to
the minimum structures. Furthermore, in the first tests [9], this
simple algorithm turned out to be more powerful than expected.
Therefore, it is interesting to study its performance in a realistic
example.



3 Application

In order to be able to judge the success of the algorithm,
we focus again on small silicon clusters, where there is at
least some degree of consensus in the literature on what
the global minimum structures are. Also, there are by
now a few experimental results, supporting some of the
theoretically predicted structures.

Single-point calculations and local geometry optimi-
zations of the clusters were done at the DFT level of
theory, in the restricted Kohn-Sham formalism [24] with
B3LYP-treatment [25] of the exchange-correlation part.
To speed up the calculations, in phase I, the neon core of
each silicon atom was replaced by the ECP10MWB
pseudopotential of Stoll and coworkers [26], with the
remaining valence electrons being represented by the
corresponding s- and p-orbital basis set, to which a d-
orbital from Woon and Dunning’s correlation-consis-
tent polarized valence double-zeta (cc-pVDZ) basis [27,
28] was added. In phase 11, for Siy and Sis, all electron
calculations were performed, using the full cc-pVDZ
basis. At this stage, also other basis sets (6-31G* and cc-
pVTZ) were tested, but this did not change the results
qualitatively and had only marginal quantitative effects
(about 0.6 or 0.02 A change in bond lengths and about
0.3 or 3° change in bond angles, in the locally optimized
structures).

This DFT treatment is realized by linking the global
optimization algorithm described above with standard
quantum chemistry packages: MOLPRO [29] for the
single-point calculations in phase I, and Gaussian 94 [30]
for the local DFT optimizations in phase II.

As in the previous test application [9], the model
potential is again the Stillinger-Weber-Gong potential
[10, 11], since it proved itself to be surprisingly versatile
there. As hinted at in the introduction, the Bolding-
Andersen potential is less practical as a model potential
for the present purpose, since it contains 40 parameters
with a large degree of interdependence between them,
which makes it difficult to vary the potential while
keeping its overall form reasonable.

Table 1. Result of the global DFT geometry optimization of Si;
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4 Results

Results for Siy, Si4, Sig and Sijy are presented in this
section, in the order of increasing challenge for the
global optimization.

Table 1 displays a detailed overview of the results for
Si7, supplemented by Fig. 1. The geometry Si7.1 pro-
posed by the algorithm as the global minimum is a
pentagonal bipyramid; this agrees with almost all pub-
lished calculations on various levels of theory, e.g. em-
pirical potentials [31, 32], extended-Hiickel [33], DFT-
MDSA [35, 34], fourth-order Mgller-Plesset perturba-
tion theory (MP4) and Hartree-Fock (HF)-SCF [36],
and it is also in accord with the recent experimental
findings [37, 38]. This apparent independence of the
computational method used seems to indicate that the
Si; problem is simple. However, in our previous test
application [9], the present global optimization method
with the very same Stillinger-Weber-Gong model po-

Si7.1
0.0 eV

Si7.2
1.446 eV

Fig. 1. Optimized geometries of Si;: Si7.1 is the (very likely) global
minimum, Si7.2 is a low-energy local minimum (cf. Table 1).
Energies in eV are given relative to Si7.1

nt E-No." Geometry® Opt. geometry? Eopi/eVe Steps'
1 19 Pent. bipy. Si7.1 0.0 6

12 14 Pent. bipy. Si7.1 0.0 6

14 20 Pent. bipy. Si7.1 0.0 6

77 22 Capped Td Deformed Si7.2 0.6539 16

68 1 Pent. bipy. Si7.1: pent. bipy. 0.0 4

80 25 Irregular® Deformed Si7.2 0.8382 25

91 26 Capped Oh Si7.2: C3, 1.446 9

4 Generated in the n’th step of phase I
b Ranking by increasing DFT energies after phase I

¢ Geometry generated in phase I: pent.bipy, pentagonal bipyramid; Td, tetrahedron; Oh, octahedron
d Result of the local optimization in phase II; geometries denoted as Si7.n are shown in Fig. 1
¢ DFT energy after phase 11, relative to the pentagonal bipyramid Si7.1

fNumber of steps in the local optimization of phase I

€ Pentagonal bipyramid with one equatorial atom moved to an equatorial capping position
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tential was able to locate a planar artifact that has a
lower energy than the pentagonal bipyramid on the
Bolding-Andersen surface. Similar planar structures did
not appear during the global optimization on the DFT
surface. This proves that the model potential parameter
optimization in the present method actually adapts the
model potential successfully to the more complicated
potential it is meant to simulate (i.e. to the Bolding-
Andersen potential in the previous test application [9], or
to the DFT potential in the present study). This ap-
pearance of artifacts also shows that even in the ap-
parently simple case of Si; a more traditional approach
of running a series of local optimizations starting from
geometries based on reasonable guesses or on pre-opti-
mizations using fixed-parameter model potentials may
be misleading. At least, it prevented Bolding and An-
dersen from locating these artifacts on their surface [§].

Table 1 also shows that the global optimization on
the model potential in phase I yields very good starting
geometries for the ensuing local DFT optimizations in
phase II. The regular structures Si7.1 and Si7.2 can be
fully converged within 4-9 steps, whereas 15-20 steps are
needed for re-convergence if one of these geometries is
distorted by randomly applying coordinate changes in
the order of 0.1 A.

The computational expense should be compared with
that of the standard approach of a series of local DFT
optimizations starting from geometries generated by
educated guesswork (possibly supported by pre-optimi-
zations with lower-level methods or on fixed model po-
tentials). Each geometry in phase I needs one single-
point DFT energy calculation, hence when arriving at
geometry number 7 in this phase, n» DFT energy calcu-
lations have been made. The local optimization on the
DFT level in phase II needs gradients, therefore we as-
sume that each local optimization step in this phase re-
quires a computational expense equivalent to
approximately two energy calculations. The geometry
number 68 reached the best DFT energy after phase I,
and could be converged locally in phase II in only 4
steps. This corresponds to a total expense of 80 energy
calculations (4 DFT energy calculations for the random
geometries in the startup of phase I, plus 68 in the exe-
cution of phase 1, plus 2 x 4 in the local optimization of
phase II). Assuming that a typical starting geometry in
the traditional approach can be converged in only 10

Table 2. Result of the global DFT geometry optimization of Sig

steps (corresponding to 20 energy calculations), this al-
lows us to test only 4 starting geometries in this ap-
proach; that is, the global optimization with the present
method appears to be as expensive as 4 local optimiza-
tions. However, inspecting Table 1 again, it is not really
necessary to wait for geometry number 68 in phase I,
since geometries 1, 12 and 14 also converge to the same
final structure in phase II. Therefore, our estimate is
overly conservative; we can also find geometry Si7.1 with
a computational expense of only 10-20 energy calcula-
tions. With this estimate, the global geometry optimi-
zation is only as expensive as a single local optimization.

Siy4 is a smaller cluster than Siy, but it is actually more
difficult for global optimization since different methods
have led to different results. Several simple empirical
potentials favour the tetrahedron, more elaborate ab
initio approaches arrive at the rhombus instead [8, 39].
Table 2 and Fig. 2 show that the present algorithm needs
about 30-50 energy calculations to find the planar
rhombus Si4.1 as global minimum, in agreement with
other DFT and ab initio results [35, 40, 41] and experi-
mental values [37, 38]. Therefore, with the same
assumptions as above, the global DFT optimization
succeeds with an expense of only 1.5-2.5 local minimi-
zations.

The difficulty posed by Sig is not the existence of
several distinct minimum structures that are hard to find
but a competition of several closely related structures in
a very flat region of the potential: a pentagonal bipyra-
mid with one equatorial atom missing (pb-1, often re-
ferred to as bicapped tetrahedron), the square bipyramid
(compressed octahedron), and the equatorially edge-
capped trigonal bipyramid. All of these structures are
close to the octahedron, but the octahedron itself is
usually found at a clearly higher energy, except on some
empirical potentials [8, 31]. Which of these structures
becomes the global minimum depends very strongly on
the method used [34, 36, 38, 41-43].

Clearly, this dispute can only be settled by a high-
level (and possibly multi-reference) treatment of electron
correlation. Nevertheless, it is satisfying that the present
method applied on the moderate DFT level is able to
reveal the complete picture of the Sig surface exactly as
just sketched, cf. Table 3 and Fig. 3. The pb-1 structure
Si6.1 and the square bipyramid Si6.2 are very close
competitors for the global minimum; the energetic dif-

n* E-No.b Geometry® Opt. geometry? Eopi/eVe Steps’
14 17 Planar Rh Si4.1 0.0 5
35 1 Planar Rh Si4.1: planar Rh 0.0 4
52 24 Triangle + 1 Si4.1 0.0 13
56 46 Tetrahedron Si4.2 2.354 3
66 3 Bent Rh Si4.1 0.0 9

4 Generated in the n’th step of phase [
b Ranking by increasing DFT energies after phase I

¢ Geometry generated in phase I: Rh, rhombus; triangle + 1, triangle with one appended atom = opened rhombus
d Result of the local optimization in phase II; geometries denoted as Si4.n are shown in Fig. 2

¢ DFT energy after phase II, relative to the planar rhombus Si4.1
f Number of steps in the local optimization of phase II



ference between them is certainly not significant com-
pared to the inaccuracies of the DFT approach used. A
capped trigonal bipyramid is also found, albeit in dis-
torted form and with a non-equatorial cap (Si6.3; it is
likely that a structure with an equatorial cap may have a
similar energy. This question was not investigated fur-
ther, since a full surface characterization is not the aim
of this study). The octahedron Si6.4 is correctly identi-
fied as a high-lying local minimum; its minor importance
is further documented by geometry number 11 managing
to escape from its neighbourhood in configuration space
and by other, less symmetric geometries like Si6.3 oc-
curing at much lower energy. Using the same assump-
tions as above, the computational expense for finding
the structure Si6.1 is comparable to that of two local
optimization runs.

Sijp is a substantially larger cluster, and there has
been some disagreement about its global minimum
structure [8, 33, 34, 36, 42, 43]. Recently, there seems to
be some convergence of theoretical [44] and even ex-
perimental work [45] towards the tetracapped trigonal

Si4.1
0.0 eV

Sid.2
2.354 eV

Fig. 2. Optimized geometries of Siy: Si4.1 is the global minimum,
Si4.2 is a low-energy local minimum (cf. Table 2). Energies in eV
are given relative to Si4.1

Table 3. Result of the global DFT geometry optimization of Sig
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prism (ttp) as the global minimum. Application of the
present strategy to Sij yields the results shown in Table
4 and Fig. 4. Obviously, there is again qualitative
agreement with the currently accepted results. The ttp
structure Sil0.1 (or possibly a skewed variant of it,
Si10.2) is found as the global minimum, followed by the
bicapped square antiprism Sil0.3, also sometimes pro-
posed in the literature as the global minimum. The
computational effort to find the ttp structure amounts to
98 energy calculations. If we assume in all fairness that a
typical local optimization run now requires about 15-20
steps due to the cluster being larger, this estimate is
equivalent to approximately 2.5-3 local optimization
runs. Of course, it has to be expected that the effort

L &2

Si6.1 Si6.2
0.0 eV 0.01351 eV

A &

Si6.3 Si6.4
0.5966 eV 1.331 eV

Fig. 3. Optimized geometries of Sig: Si6.1 and Si6.2 are close
competitors for the global minimum, Si6.3 is a low-energy local
minimum, the octahedron Si6.4 is much higher in energy (cf. Table
3). Energies in eV are given relative to Si6.1

n* E-No.b Geometry® Opt. geometry? Eopi/eV© Steps’
6 2 pb-1 Si6.1: pb-1 0.0 15

8 43 tbp-1cap Si6.3: dist.tbp-lcap  0.5966 11

11 50 Oh Si6.2: sbp-c 0.01351 19

36 30 sbp-c Si6.2: sbp-c 0.01351 15

62 45 sbp-e Si6.2: sbp-c 0.01351 18

67 1 pb-1 Si6.1: pb-1 0.0 15

90 51 Oh Si6.4: Oh 1.331 4

4 Generated in the »n’th step of phase I
® Ranking by increasing DFT energies after phase I

¢ Geometry generated in phase I: pb-1, pentagonal bipyramid with one equatorial atom missing; sbp-c/e, square bipyramid (compressed or
elongated octahedron); tbp-1cap, trigonal bipyramid with one non-equatorial edge capped; dist., distorted; Oh, octahedron
d Result of the local optimization in phase II; geometries denoted as Si6.n are shown in Fig. 3

¢ DFT energy after phase II, relative to the sbp-1 structure Si6.1
T Number of steps in the local optimization of phase II
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Table 4. Result of the global DFT geometry optimization of Sij

n E-No.b Geometry® Opt. geometry? Eopi/eVe Steps’
24 2 pp + rhombus Si10.2: skew-ttp 0.09562 19
25 7 absa Si10.3: absa 0.8438 12
40 3 pp +rhombus Si10.1: ttp 0.0 27
54 1 dist.ttp Si10.4: csp + rhombus 1.120 18

4 Generated in the n’th step of phase I
b Ranking by increasing DFT energies after phase I

¢ Geometry generated in phase I: pp, pentagonal pyramid; ttp, tetracapped trigonal prism; absa,
axially bicapped square antiprism; dist., distorted; csp, equatorially edge-capped square pyramid
d Result of the local optimization in phase II; geometries denoted as Sil0.n are shown in Fig. 4

¢ DFT energy after phase 11, relative to the ttp structure Sil0.1
fNumber of steps in the local optimization of phase II

Si10.1 S5i10.2

0.0 eV 0.09562 eV
Si10.3 S5i10.4
0.8438 eV 1.120 eV

Fig. 4. Optimized geometries of Sijo: Sil0.1 is presumably the global
minimum, but the distorted variant Sil0.2 is very close in energy,
Si10.3 and Sil0.4 are low-energy local minima (cf. Table 4).
Energies in eV are given relative to Sil0.1

increases with cluster size, because the number of local
minima increases presumably exponentially. As ex-
plained in the introduction, an additional methodical
development is necessary to overcome this difficulty.

5 Discussion

We have shown that the strategy presented here allows
for actual global geometry optimization on an ab initio
(or DFT) level, as evidenced by our finding most of the
currently accepted important minimum structures for
the clusters studied here. Nevertheless, the computa-

tional effort is not larger than that of a few local
optimizations (on that level of theory).

As already pointed out in the introduction, this is not
a claim that the minimum structures shown here actually
correspond to the “true’ global minima on a sufficiently
high level of theory, although these structures agree with
the most recent ones proposed in the literature. On the
contrary, high-level ab initio calculations for small sili-
con clusters performed in our group [13] indicate that
multi-reference treatments are necessary, and currently
we do not know if any of the structures shown will
survive as global or low-lying local minima under such a
treatment. With the techniques of this article, however,
we hope to be able to perform global optimizations even
at this level of theory.

Currently, we are extending this technique to molec-
ular clusters, with applications to small water clusters.

On the methodical side, the surprising success of the
simple Stillinger-Weber-Gong potential in this article
and in the earlier study [9] calls for an investigation of
exactly how flexible a model potential functional form
has to be in order to perform well in a strategy such as
the one presented here. This will be addressed by future
work.

Also, this method does not address the first of the two
central problems of global cluster geometry optimization
mentioned at the beginning of this article, namely the
explosive growth of computational expense with cluster
size. First steps to alleviate this problem have already
been made in our group [6], and further work along
these lines is in progress.

Acknowledgements . Financial support in connection with this work
by the DFG “Schwerpunktprogramm Molekulare Cluster” is
gratefully acknowledged.

References

1. Hoare MR (1979) Adv Chem Phys 40: 49

2. (a) Stillinger FH, Stillinger DK (1990) J Chem Phys 93: 6106;
(b) Wille LT, Vennik J (1985) J Phys A 18: L419; L1113

. Hendrickson BA (1995) SIAM J Opt 5: 835

4. Gregurick SK, Alexander MH, Hartke B (1996) J Chem Phys
104: 2684

. Mestres J, Scuseria GE (1995) J Comp Chem 16: 729

. Hartke B (1995) Chem Phys Lett 240: 560

. Hoare MR, MclInnes JA (1983) Adv Phys 32: 791

|95}

~N O\ W



26.

217.

28.
29.

. Bolding BC, Andersen HC (1990) Phys Rev B 41: 10568

. Hartke B (1996) Chem Phys Lett 258: 144

. Stillinger FH, Weber TA (1985) Phys Rev B 31: 5262

. Gong XG (1993) Phys Rev B 47: 2329

. Niesse JA, Mayne HR (1996) Chem Phys Lett 261: 576

. Baumhauer M (1996) diploma thesis, University of Stuttgart,

Stuttgart, Germany

. Holland JH (1975) Adaption in natural and artificial systems.

University of Michigan Press, Ann Arbor, Mich

. Goldberg DE (1989) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, Reading, Mass

. Hartke B (1993) J Phys Chem 97: 9973
. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Science 220: 671
. van Laarhoven, PJM, Aarts EHL (1987) Simulated annealing:

theory and applications. Reidel. Dordrecht

. Hartke B, Carter EA (1992) J Chem Phys 97: 6569

. Ingber L (1989) Math Comput Modelling 12: 967

. Basu A, Frazer LN (1990) Science 249: 1409

. Rossi I, Truhlar DG (1995) Chem Phys Lett 233: 231

. Peslherbe GH, Hase WL (1996) J Chem Phys 104: 7882

. Parr RG, Yang W (1989) Density functional theory of atoms

and molecules. Oxford University Press, New York

. (a) Becke AD (1993) J Chem Phys 98: 1372, 5648; (b) Stephens

PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem
98: 11623

Bergner A, Dolg M, Kiichle W, Stoll H, Preuss H (1993) Mol
Phys 80: 1431

(a) Dunning TH Jr, (1989) J Chem Phys 90: 1007; (b) Peterson
KA, Kendall RA, Dunning TH Jr (1993) J Chem Phys 99: 9790
Woon DE, Dunning TH Jr (1993) J Chem Phys 98: 1358
MOLPRO is a packet of ab initio programs, written by Werner
HJ, Knowles PJ, with contributions by Amos RD, Berning A,
Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C,
Leininger T, Lindh R, Lloyd AW, Meyer W, Mura ME,
Nicklass A, Palmieri P, Peterson K, Pitzer R, Pulay P, Rauhut
G, Schiitz M, Stoll H, Stone AJ, Thorsteinsson T

30.

31.

32.

38

39.
40.

41.

42.

247

Gaussian 94, Revision E.2. Frisch MJ, Trucks GW, Schlegel
HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith
T, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham
MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J,
Stefanov BB, Nanayakkara A, Challacombe M, Peng CY,
Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES,
Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ,
Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA
(1995) Gaussian, Inc., Pittsburgh Pa

(a) Chelikowsky JR, Phillips JC (1990) Phys Rev B 41: 5735; (b)
Chelikowsky JR, Glassford KM, Phillips JC (1991) Phys Rev B
44: 1538

Mistriotis AD, Flytzanis N, Farantos SC (1989) Phys Rev B 39:
1212

. Slee T, Zhenyang L, Mingos DMP (1989) Inorg Chem 28: 2256
. (a) Ballone P, Andreoni W, Car R, Parrinello M (1988) Phys

Rev Lett 60: 271; (b) Rothlisberger U, Andreoni W (1991) Z
Phys D 20: 243

. Binggeli N, Chelikowsky JR (1994) Phys Rev B 50: 11764
. Raghavachari K, Rohlfing CM (1988) J Chem Phys 89: 2219
. Li S, van Zee RJ, Weltner W Jr, Raghavachari K (1995) Chem

Phys Lett 243: 275

. Honea EC, Ogura A, Murray CA, Raghavachari K, Sprenger

WO, Jarrold MF, Brown WL (1993) Nature 366: 42

Andreoni W, Pastore G (1990) Phys Rev B 41: 10243
Fournier R, Sinnott SB, DePristo AE (1992) J Chem Phys 97:
4149

(a) Raghavachari K, (1985) J Chem Phys 83: 3520; (b)
Raghavachari K (1986) J Chem Phys 84: 5672

(a) Li S, Johnston RL, Murrell JN (1992) J Chem Soc Faraday
Trans 88: 1229; (b) Wales DJ, Waterworth MC (1992) J Chem
Soc Faraday Trans 88: 3409

. Patterson CH, Messmer RP (1990) Phys Rev B 42: 7530
. Raghavachari K, Rohlfing CM (1992) Chem Phys Lett 198: 521
. Rantala TT, Jelski DA, George TF (1995) Chem Phys Lett 232:

215



